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Abstract. Cluster expansion methods are applied to calculate ‘high-temperature’ series for 
the vacuum energy, the susceptibility and the mass gap for the Ising model and the O(2) 
and O(3) Heisenberg models in (1 + 1) dimensions and (2+  1) dimensions. Critical points 
and critical indices are estimated for the line, the square and the triangular lattices. The 
results demonstrate universality with the normal Euclidean versions of these models, within 
errors. 

1. Introduction 

Analysis of high-temperature series is one of the most accurate ways to estimate critical 
parameters for a lattice spin model (see, e.g., Gaunt and Guttmann 1974, Guttmann 
1989). In this paper, we use the cluster expansion methods of Nickel (1980) to calculate 
high-temperature series for the Ising and Heisenberg spin systems in their Hamiltonian 
lattice field theory versions. 

The linked cluster expansion method suggested by Nickel (1980) is the most efficient 
technique known for generating perturbation series in lattice Hamiltonian field theory. 
The idea is perhaps most easily understood in diagrammatic terms. Each term in the 
perturbation series for the ground-state energy, for instance, can always be associated 
with a diagram of an appropriate type; and because the ground-state energy is an 
extensive quantity, it can be expressed in terms of connected diagrams alone. Each 
diagram spans a connected set of sites on the underlying spatial lattice, called a ‘linked 
cluster’. The algorithm then runs as follows. A list is generated of the possible linked 
clusters up to some maximum size, together with their lattice constants. The ground- 
state energy is calculated for each cluster, and the contributions from all the smaller 
embedded sub-clusters are subtracted out, leaving only the ‘intrinsic’ terms correspond- 
ing to diagrams which completely span the original cluster. Multiplying by the lattice 
constant, one obtains the contribution of this set of diagrams to the bulk ground-state 
energy per site. More detailed descriptions of these methods have been given in earlier 
papers (Marland 1981, Irving and Hamer 1984, Hamer and Irving 1984), and will not 
be repeated here. 

The resulting series extend those previously available for these models. We analyse 
them using eight different methods of series analysis, as discussed in 0 3. The results 
of this analysis appear to give the best series estimates to date of the susceptibility 
exponent y and the critical point x,, though for the correlation-function exponent q 
earlier results based on finite-size scaling appear to offer greater accuracy. In each 
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case however, a satisfying consistency with the Euclidean lattice model results is 
obtained. 

In § 2 of the paper the quantum Hamiltonians for these models are set down, and 
the series coefficients are presented. In § 3 we describe the analysis of these series, 
and our conclusions are summarised in § 4. 

2. Series generation 

The quantum Hamiltonian of the lattice field theory version of the Ising model is 
(Fradkin and Susskind 1978) 

where the index i labels sites on a spatial lattice and (ij) are nearest-neighbour pairs 
of sites, while the time variable is continuous. The (+k are Pauli matrices acting on a 
two-state spin variable at each site, x is the coupling (corresponding to the inverse 
temperature p in the Euclidean formulation), and h is a magnetic field variable. The 
second and third terms in equation (2.1) are exactly the same spatial interaction terms 
which appear in the ordinary Euclidean Hamiltonian; while the first term is the remnant 
of the pairwise interaction in the 'time' direction which survives after taking the 
'r-continuum' limit (Fradkin and Susskind 1978). 

We have calculated perturbation series for the lowest two eigenvalues wo and w ,  
of the Hamiltonian (2.1). Quantities derived therefrom are: the ground-state energy 
per site w,,/N, where N is the number of sites of the lattice; the mass gap 

F ( x )  = w1(x) - w d x )  (2.2) 
and the magnetic susceptibility 

1 a2wo 

Table 1 lists coefficients of the perturbation series in x for each quantity, for the square 
and triangular lattices. The coefficients were previously calculated to seventh order 
on the square lattice and to sixth order on the triangular lattice by Hamer and Irving 
(1984). 

The quantum Hamiltonian for the O(2) Heisenberg model is (Hamer et a l  1979) 

H = c J2( i) - x c n( i) n( j )  - h n,( i) 
I ( ij) I 

where n ( i )  is a two-component spin vector at site i, normalised to unity, so that 

n ( i ) =  (n , ( i ) ,  n2(i))  

=(cos e(i) ,sin e ( i ) )  

(2.4) 

(2.5) 
and J ( i )  is the angular momentum operator conjugate to O ( i ) ,  which can take any 
integer eigenvalue. If we define 

cp(i)=exp[iO(i)]= nl( i )+in2(i)  

then cp(i) ,  cp'(i) are raising and lowering operators for J(i), obeying commutation 
relations 

[J(i), c~ ( j ) l=  q(i)aij [ J ( i ) ,  cp" = -cp+(iP,. (2.6) 
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Table 1. High temperature series in x for the vacuum energy per site wo/ N, the susceptibility 
,y and the mass gap F for the k ing  model. Coefficients of x” are listed for the square and 
triangular lattices. 

n W O /  N X F 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Sauare lattice 
0.0 
0.0 

-0.5 
0.0 

-0.468 75 
0.0 

0.0 

0.0 

-1.148 437 5 

-4.395 263 671 88 

- 
1 .o 
4.0 

13.5 
45.0 

144.843 75 
464.444 444 44 

1 469.358 506 94 
4 639.482 349 54 

14 544.119 239 7 
45 531.479 663 3 

Triangular lattice 
0.0 1 .o 
0.0 6.0 

-0.75 32.25 
-0.75 166.5 
-1.359 375 843.046 875 
-3.093 75 
-8.355 468 75 

-24.667 968 75 
-78.127 358 3008 

4 218.416 666 67 
20 941.023 003 5 

103 361.512 587 
507 986.371 687 

2.0 
-4.0 
-2.0 
-3.0 
-4.5 

-11.0 
-20.507 812 5 
-57.699 218 7499 

-114.836 303 711 
-350.106 720 13 

2.0 
-6.0 
-6.0 

-10.5 
-3 1.5 
-98.531 25 

-346.710 937 5 
-1255.205 566 41 
-4795.437 012 0 

Table 2 lists the perturbation series coefficients for this model. The susceptibility series 
for the line lattice was previously calculated to sixth order by Hamer and Kogut (1979), 
and the mass gap series was obtained to tenth order by Hornby and Barber (1985). 
Sobelman (1981) has calculated the mass gap to fourth order for a hypercubic lattice 
in any number of dimensions. 

For the O(3) Heisenberg model, the quantum Hamiltonian is 

(2.7) 

where now n ( i )  is a three-component spin vector at site i (normalised to unity), and 
J ( i )  is a vector angular momentum operator. For further detials, we refer to Hamer 
et a1 (1979). Table 3 lists the perturbation series for this model. For the line lattice, 
the mass gap series has previously been calculated to sixth order by Hamer et al 
(1979), and the susceptibility series to sixth order by Hamer and Kogut (1979). The 
(2+ 1)-dimensional model has not been studied before, to our knowledge. 

3. Series analysis 

The 24 series listed in tables 1 ,2  and 3 have all been analysed by eight distinct methods. 
Seven of the methods extrapolate the ratios of coefficients, while the eighth method 
is the method of differential approximants (Guttmann and Joyce 1972, Rehr et a1 
1980). Attempting to extrapolate the ratios of coefficients it is clear that, in most cases, 
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Table 2. High-temperature series in x for the vacuum energy per site wo/ N, the susceptibility 
x and the mass gap F for the O(2) Heisenberg model. Coefficients of x ”  are listed for the 
line, square and triangular lattices. 

n %I N X F 

0 
1 
2 
3 
4 
5 
6 
7 
8 

0 
1 
2 
3 
4 
5 
6 
7 
8 

0 
1 
2 
3 
4 
5 
6 
7 
8 

0.0 
0.0 

-0.25 
0.0 
0.006 510 416 667 
0.0 
0.001 220 444 775 13 
0.0 
0.000 018 130 926 5634 

0.0 
0.0 

-0.5 
0.0 

0.0 

0.0 

-0.382 812 5 

-0.718 256 035 053 

-0.231 359 616 070 

0.0 
0.0 

-0.75 
-0.75 
-1.167 968 75 
-2.356 770 833 33 
-5.784 368 024 56 

-15.736 769 379 
-46.094 316 275 8 

Line lattice 
1 .o 
2.0 
2.6 
2.887 5 
2.895 434 138 39 
2.696 261 969 00 
2.394 661 629 47 
2.042 744 227 03 
1.686 753 325 07 

Square lattice 
1.0 
4.0 

13.2 
42.575 

131.887 566 369 
404.761 871 477 

1223.918 123 46 
3 682.463 983 34 

10 992.868 315 5 

Triangular lattice 
1.0 
6.0 

31.8 
160.222 5 
786.990 563 358 

3 806.089 606 55 
18 214.774 502 4 
86 508.909 227 

408 510.254601 

1 .o 
-1.0 

0.125 
0.031 25 
0.014 388 020 833 3 
0.006 002 061 631 94 
0.000 226 149 678 417 
0.000 695 799 136 309 

-0.000 175 027 796 25 

1 .o 
2.0 

-0.75 
-1.375 
-1.379 817 708 33 
-4.087 947 048 63 
-5.678 693 667 86 

-18.405 049 435 9 

1 .o 
-3.0 
-2.625 
-4.312 5 

-12.065 429 687 5 
-35.091 933 593 8 

-116.279 209 828 
-393.768 284 

-1421.975 816 67 

the ratios are affected by one or more singularities other than the physical singularity- 
usually an ‘antiferromagnetic’ singularity on the negative real axis. To diminish the 
effect of this singularity, we have first transformed the series by an Euler transformation 

y =x(l + a ) / ( l  + a x / x , )  (3.1) 

where x is the original expansion variable, y is the new variable, x, is an estimate of 
the critical temperature (which need not be particularly accurate, but is a fixed point 
of the transformation) and a is a user-chosen parameter. As discussed by Nickel 
(1982), it is important to make a as small as possible, consistent with the desired result 
that the effect of singularities other than the one of interest be eliminated. The frequent 
choice a = 1 has the disadvantage that the transformed series (in y )  effectively utilises 
only half the original series coefficients (see Guttmann (1989) for an expansion of this 
point). Thus in this analysis we have chosen a in the range [0.1-0.41, as appropriate. 
The series thus transformed then have smooth, extrapolable ratios of series coefficients. 
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Table 3. High temperature series in x for the vacuum energy per site W O /  N,  the susceptibility 
x and the mass gap F for the O(3) Heisenberg model. Coefficients of x ”  are listed for the 
line, square and triangular lattices. 

n WO/ N X F 

Line lattice 
0.0 0.333 333 333 3333 
0.0 0.222 222 222 2222 

-0.083 333 333 333 33 0.094 907 407 4075 
0.0 0.032 889 680 4939 
0.000 057 870 370 37 0.009 930 685 687 35 
0.0 0.002 574 319 325 70 
0.000 002 764 366 549 0.000 649 943 687 76 

Square lattice 
0.0 0.333 333 333 333 
0.0 0.444 444 444 444 

0.486 111 111 111 
0.0 0.516 396 604940 

0.525 667 790 395 
0.0 0.528 065 910 445 

0.522 165 623 325 

-0.166 666 666 666 7 

-0.013 194 444 444 4 

-0.002 364 244 929 5 

Triangular lattice 
0.0 0.333 333 333 333 
0.0 0.666 666 666 667 

-0.25 1.173 611 111 111 
-0.083 333 333 333 33 1.955 729 166 667 
-0.041 319 44444444 3.166 393 137 31 
-0.026 074 074 07 5.035 742 520 30 

2.0 
-0.666 666 666 666 7 

0.037 037 037 037 
0.000 432 098 765 432 
0.000 327 421 778 039 
0.000 020 140 463 593 

-0.000 016 881 989 548 

2.0 
-1.333 333 333 333 
-0.148 148 148 148 
-0.098 353 909 465 0 
-0.024 830 165 262 3 
-0.028 656 708 446 
-0.010 731 673 23 
-0.012 999 698 804 8 

2.0 
-2.0 
-0.555 555 555 556 
-0.295 679 012 346 
-0.257 983 049 187 
-0.238 779 221 64 
-0.253 437 328 0 

The coefficients of the transformed series were then analysed by the standard ratio 
method with Neville-Aitken extrapolation; the method of Barber and Hamer (1982), 
which was designed for the extrapolation of such series; Lubkin’s (1952) three-term 
method, advocated by Drummond (1984) as a powerful general purpose extrapolation 
scheme; the Bulirsch-Stoer (1964) method, which has been recently applied to such 
series as ours by Henkel and Schutz (1988); Levin’s U transform (Levin 1973); 
Brezinski’s 0 transform (Brezinski 1971) and Wynn’s E algorithm (Wynn 1956). These 
last three have been found by Smith and Ford (1982) to be the most powerful general 
purpose methods of analysis for logarithmically convergent sequences. These methods 
are all described, compared and discussed in Guttmann (1989). 

In tables 4 and 5 we show a typical analysis of our data-in this case the susceptibility 
series of the (2+ 1)-dimensional triangular lattice O(2) model. Table 4 shows the result 
of an inhomogeneous differential approximant analysis (Guttmann 1987a), where we 
have tabulated the estimates of critical points and critical exponents of [L/ N + A; NI 
approximants, with A = -1, 0, 1. Defective approximants are marked with an asterisk. 
Combining these following the statistical procedure described in Guttmann (1987a), 
we obtain the estimate x ,  = 0.2208 f 0.0002, y = 1.345 f 0.025. In table 5 we show the 
results of the other seven methods, applied to the extrapolation of the ratio sequence, 
after the series was first transformed using the transformation (3.1) with a = 0.1 and 
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Table 4. Triangular lattice (2+ 1)-dimensional, O(2)  model susceptibility. Differential 
approximants [ L / N + A ;  NI, A =  - l , O ,  1, showing estimates of x, and y. Defective 
approximants are marked with an asterisk. 

L A N = l  N = 2  N = 3  

1 -1 

0 

1 

2 -1 

0 

1 

3 -1 

0 

1 

4 -1 

0 

1 

5 -1 

0 

0.219 88 

0.220 61 
-1.310 

-1.338 

- 
- 
0.220 44 

0.220 90 
- 1.328 

-1.353 

- 
0.220 71 

0.221 00 
- 1.340 

-1.360 

0.220 84 

0.221 77* 
-1.347 

-1.418 

- 
- 
0.220 63 

-1.334 

0.214 35 0.220 94 

0.220 89 0.221 08* 

0.221 04 

-1.107 -1.353 

-1.352 -1.368 

-1.364 

0.220 88 0.221 01* 

0.220 56* 

0.221 07* 

-1.351 -1.362 

-1.292 

- 1.367 

0.220 98 

0.221 04* 
-1.358 

-1.365 

0.220 47 
-1.318 

l/xc = 4.530. The simple method of Neville-Aitken extrapolation produced the most 
regular sequences of estimates. These give for l/yc the estimate 4.531 i0.004, while 
extrapolation of the sequence of linear intercepts of the ratios (not shown) gave the 
same estimate of y,, but with half the error. This result maps to x, = 0.2207 f 0.0001 
under the inverse of (3.1). 

This result is consistent with the estimate from the differential approximants, as 
well as with that obtained from the other extrapolation techniques, as shown in table 
5. Most of the other methods, the results of which are shown in table 5 ,  would, 
however, have error bars five to ten times as large. 

A similar analysis was performed for each series, where in each case we extrapolated 
not only the sequence of ratios, but also the sequence of linear intercepts of the ratios, 
given by 

(3.2) f ; l =  nr, - ( n  - l)r,-, 

where r, is the ratio, a,/a,,-,, of successive coefficients of the transformed series. 
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Table 5. Extrapolations of the sequence of ratios of the coefficients of the O(2)  model 
triangular lattice (2  + 1)-dimensional susceptibility series. r,, are ratios, e!:)  are kth-order 
Neville-Aitken extrapolants, [:,"I are kth-order extrapolants from Lubkin's transform, bh!,'" 
are kth-order extrapolants using the Barber-Hamer method, while U!,"', E ! : ) ,  e:,") and 
B-S',;" are kth-order extrapolants using Levin's U transform, Wynn's E algorithm, 
Brezinski's 6 algorithm and the Bulirsch-Stoer algorithm respectively. 

1 5.4545 
2 5.2300 
3 5.0109 
4 4.8969 
5 4.8268 
6 4.7792 
7 4.7447 
8 4.7186 

5.0055 
4.5729 4.3565 5.4601 -3.7299 
4.5546 4.5364 5.0050 4.7728 
4.5464 4.5341 4.5286 5.4534 4.7151 4.6972 
4.5412 4.5310 4.5176 4.5291 4.6785 4.4971 
4.5377 4.5288 4.5169 4.5168 4.6538 4.5154 
4.5359 4.5305 4.5416 4.5172 4.6375 4.5780 

5.4545 
5.2301 4.7229 

5.4603 -3.7299 5.0110 4.3130 
4.4894 4.1728 5.0050 4.8969 4.3860 4.493 
4.5092 5.0050 4.7151 4.7266 4.5286 4.8269 4.4236 4.500 
4.5125 4.5287 4.6786 4.6509 4.5176 4.7193 4.4454 4.502 
4.5139 4.5176 4.6537 4.6276 4.5169 4.7448 4.5927 4.504 
4.5223 4.5169 4.6375 4.6194 4.5416 4.7187 4.6984 4.509 

Similarly, unbiased estimates of the exponent are given by the sequence with terms 
y n ,  where 

Y n  = r n ( 2 - n ) ~ n + ( n - 1 ) 2 r n - 1 1 / 5 n . -  (3.3) 

Once x, has been estimated, biased exponent estimates can be obtained from the 
sequence { y : } ,  with elements 

(3.4) b y n  = (nx,rn - n + 1). 

Both the biased and unbiased exponent sequences were also extrapolated by all seven 
sequence extrapolation algorithms for all series. 

The results of this analysis is summarised in table 6 for the ( 2 +  1)-dimensional 
susceptibility series and mass gap series, which give estimates of the exponents y and 
v respectively. We have not analysed the series for the vacuum energy, as they are 
rather shorter than the other series, and also more difficult to analyse. For the line 
lattice, our analysis of the O ( 2 )  model gave an estimate of x, = 1.551t0.20, but no value 
of the critical exponent consistent with a conventional algebraic singularity was found. 
A subsequent analysis that assumed a Kosterlitz-Thouless-type singularity indicated 
that the series were too short for confident assertions about the nature of the singularity 
from these series alone. Another analysis of these series, and other data pertaining to 
this problem, is to be found in Allton and Hamer (1988). For the O(3) model on the 
line lattice we found no evidence of a critical point. 

A comparison of our analysis with previous analyses is given in table 7 for the 
Ising model. For comparison we also give the results of a representative analysis of 
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Table6 Summary of results of analyses described in text for (2 + 1)-dimensional susceptibil- 
ity series and mass gap series. The confidence limits are shown bracketed after each entry. 

Model xc y (unbiased) y (biased) U (unbiased) U (biased) 

Square lattice 
Ising 0.328 5 (4) 1.239 (5)  1.245 (4) 0.646 (8) 0.640 (5) 
O(2) 0.348 0 (10) 1.33 (3) 1.310 (5) 0.695 (4) 0.676 (10) 
o ( 3 )  1.080 (5) 1.41 (4) 1.40 (1) 0.724 (8) 0.724 (4) 

Triangular lattice 
Ising 0.209 72 (7) 1.234 (4) 1.242 (2) 0.646 (8) 0.640 (5) 
O(2) 0.220 7 (1) 1.33 (1) 1.334 (5) 0.686 (3) 0.686 (3) 
O(3) 0.678 3 (4) 1.397 (1) 1.395 (5) 0.713 (5) 0.713 (2) 

Table 7. A comparison of previous calculations with results obtained in this work for the 
(24- 1)-dimensional Ising model: HTFT= High-temperature field theory, LTFT= 
Low-temperature field theory, FSS = Finite-size scaling, EL = Euclidean lattice model. 

Calculation U Y xc 

Square lattice 
HTFT Hamer and Irving 1084 
LTFT Marland 1981 - 
FSS Hamer 1983 0.635 (5) 
FSS Henkel 1984 0.629 (2) 
This work 0.646 (8) ub 

EL Guttmann 1987b 0.632 (3) 

0.66 (2) 

0.640 (5) b 

Triangular lattice 
HTFT Hamer and Irving 1984 
LTFT Marland 1981 - 
FSS Hamer and Johnson 1986 
This work 0.646 (8) ub 

EL Guttmann 1987b 0.632 (3) 

0.64 (2) 

0.627 (4) 

0.640 (5) b 

1.257 (10) 
y'  = 1.25 

- 
1.239 (5) ub 
1.245 (4) b 
1.239 (3) 

1.247 (5) 

1.236 (8) 
1.243 (4) ub 
1.242 (2) b 
1.239 (3) 

y ' =  1.250 (12) 

0.3290(10) 
0.329 (1) 
0.329 (1) 
0.328 (1) 
0.328 5 (4) 

N.A. 

0.209 76 (15) 
0.209 8 (2) 
0.209 6 (2) 
0.209 72 (7)  

N.A. 

the Euclidean lattice spin model. It can be seen that the analysis of the mass-gap 
series presented here is less accurate than analyses based on finite-size scaling (Hamer 
1983, Henkel 1984, Hamer and Johnson 1986), while the analysis of the susceptibility 
series is significantly more accurate than any previous analysis, as is the estimate of 
the critical point. Comparison with recent series estimates (Guttmann 1987b) demon- 
strates satisfying consistency between the Euclidean lattice model and its counterpart 
in Hamiltonian lattice field theory. 

4. Conclusions 

Our final estimates for the critical parameters of the three models on the square and 
triangular lattices are summarised in table 6. These are the first accurate estimates 
which have been made for the O(2) and O(3) Heisenberg models. 
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For the Ising model, earlier series estimates have been given by Marland (1981) 
and by Hamer and Irving (1984). Our results are generally in good agreement with 
those earlier estimates, but are about twice as accurate. Finite-size scaling analyses 
have also been made by Hamer (1983) and Henkel (1984) for the square lattice, and 
by Hamer and Johnson (1986) for the triangular lattice. For the critical index v, in 
particular, they obtained results 0.635 ( 5 ) ,  0.629 (2) and 0.627 (4) respectively which 
are slightly lower and perhaps slightly more accurate than ours. 
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