Cluster expansions for the Ising and Heisenberg spin models in Hamiltonian lattice field theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 223653
(http://iopscience.iop.org/0305-4470/22/17/030)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 11:57

Please note that terms and conditions apply.

# Cluster expansions for the Ising and Heisenberg spin models in Hamiltonian lattice field theory 

C J Hamer $\dagger$ and A J Guttmann $\ddagger$<br>+ School of Physics, University of NSW, PO Box 1, Kensington 2033, NSW, Australia<br>$\ddagger$ Department of Mathematics; University of Melbourne, Parkville 3052, Vic, Australia

Received 30 January 1989


#### Abstract

Cluster expansion methods are applied to calculate 'high-temperature' series for the vacuum energy, the susceptibility and the mass gap for the Ising model and the $O$ (2) and $\mathrm{O}(3)$ Heisenberg models in $(1+1)$ dimensions and $(2+1)$ dimensions. Critical points and critical indices are estimated for the line, the square and the triangular lattices. The results demonstrate universality with the normal Euclidean versions of these models, within errors.


## 1. Introduction

Analysis of high-temperature series is one of the most accurate ways to estimate critical parameters for a lattice spin model (see, e.g., Gaunt and Guttmann 1974, Guttmann 1989). In this paper, we use the cluster expansion methods of Nickel (1980) to calculate high-temperature series for the Ising and Heisenberg spin systems in their Hamiltonian lattice field theory versions.

The linked cluster expansion method suggested by Nickel (1980) is the most efficient technique known for generating perturbation series in lattice Hamiltonian field theory. The idea is perhaps most easily understood in diagrammatic terms. Each term in the perturbation series for the ground-state energy, for instance, can always be associated with a diagram of an appropriate type; and because the ground-state energy is an extensive quantity, it can be expressed in terms of connected diagrams alone. Each diagram spans a connected set of sites on the underlying spatial lattice, called a 'linked cluster'. The algorithm then runs as follows. A list is generated of the possible linked clusters up to some maximum size, together with their lattice constants. The groundstate energy is calculated for each cluster, and the contributions from all the smaller embedded sub-clusters are subtracted out, leaving only the 'intrinsic' terms corresponding to diagrams which completely span the original cluster. Multiplying by the lattice constant, one obtains the contribution of this set of diagrams to the bulk ground-state energy per site. More detailed descriptions of these methods have been given in earlier papers (Marland 1981, Irving and Hamer 1984, Hamer and Irving 1984), and will not be repeated here.

The resulting series extend those previously available for these models. We analyse them using eight different methods of series analysis, as discussed in § 3. The results of this analysis appear to give the best series estimates to date of the susceptibility exponent $\gamma$ and the critical point $x_{c_{2},}$ though for the correlation-function exponent $\eta$ earlier results based on finite-size scaling appear to offer greater accuracy. In each
case however, a satisfying consistency with the Euclidean lattice model results is obtained.

In $\S 2$ of the paper the quantum Hamiltonians for these models are set down, and the series coefficients are presented. In $\S 3$ we describe the analysis of these series, and our conclusions are summarised in §4.

## 2. Series generation

The quantum Hamiltonian of the lattice field theory version of the Ising model is (Fradkin and Susskind 1978)

$$
\begin{equation*}
H=\sum_{i}\left(1-\sigma_{3}(i)\right)-x \sum_{\langle i j\rangle} \sigma_{1}(i) \sigma_{1}(j)-h \sum_{i} \sigma_{1}(i) \tag{2.1}
\end{equation*}
$$

where the index $i$ labels sites on a spatial lattice and $\langle i j\rangle$ are nearest-neighbour pairs of sites, while the time variable is continuous. The $\sigma_{k}$ are Pauli matrices acting on a two-state spin variable at each site, $x$ is the coupling (corresponding to the inverse temperature $\beta$ in the Euclidean formulation), and $h$ is a magnetic field variable. The second and third terms in equation (2.1) are exactly the same spatial interaction terms which appear in the ordinary Euclidean Hamiltonian; while the first term is the remnant of the pairwise interaction in the 'time' direction which survives after taking the ' $r$-continuum' limit (Fradkin and Susskind 1978).

We have calculated perturbation series for the lowest two eigenvalues $\omega_{0}$ and $\omega_{1}$ of the Hamiltonian (2.1). Quantities derived therefrom are: the ground-state energy per site $\omega_{0} / N$, where $N$ is the number of sites of the lattice; the mass gap

$$
\begin{equation*}
F(x)=\omega_{1}(x)-\omega_{0}(x) \tag{2.2}
\end{equation*}
$$

and the magnetic susceptibility

$$
\begin{equation*}
\chi(x)=-\left.\frac{1}{N} \frac{\partial^{2} \omega_{0}}{\partial h^{2}}\right|_{h=0} . \tag{2.3}
\end{equation*}
$$

Table 1 lists coefficients of the perturbation series in $x$ for each quantity, for the square and triangular lattices. The coefficients were previously calculated to seventh order on the square lattice and to sixth order on the triangular lattice by Hamer and Irving (1984).

The quantum Hamiltonian for the $\mathrm{O}(2)$ Heisenberg model is (Hamer et al 1979)

$$
\begin{equation*}
H=\sum_{i} J^{2}(i)-x \sum_{\langle i j\rangle} \boldsymbol{n}(i) \cdot \boldsymbol{n}(j)-h \sum_{i} n_{1}(i) \tag{2.4}
\end{equation*}
$$

where $\boldsymbol{n}(i)$ is a two-component spin vector at site $i$, normalised to unity, so that

$$
\begin{align*}
\boldsymbol{n}(i) & \equiv\left(n_{1}(i), n_{2}(i)\right) \\
& =(\cos \theta(i), \sin \theta(i)) \tag{2.5}
\end{align*}
$$

and $J(i)$ is the angular momentum operator conjugate to $\theta(i)$, which can take any integer eigenvalue. If we define

$$
\varphi(i)=\exp [\mathrm{i} \theta(i)]=n_{1}(i)+i n_{2}(i)
$$

then $\varphi(i), \varphi^{\dagger}(i)$ are raising and lowering operators for $J(i)$, obeying commutation relations

$$
\begin{equation*}
[J(i), \varphi(j)]=\varphi(i) \delta_{i j} \quad\left[J(i), \varphi^{\dagger}(j)\right]=-\varphi^{\dagger}(i) \delta_{i j} \tag{2.6}
\end{equation*}
$$

Table 1. High temperature series in $x$ for the vacuum energy per site $\omega_{0} / N$, the susceptibility $\chi$ and the mass gap $F$ for the Ising model. Coefficients of $x^{n}$ are listed for the square and triangular lattices.

| $n$ | $\omega_{0} / N$ | $\chi$ | F |
| :---: | :---: | :---: | :---: |
| Square lattice |  |  |  |
| 0 | 0.0 | 1.0 | 2.0 |
| 1 | 0.0 | 4.0 | -4.0 |
| 2 | -0.5 | 13.5 | -2.0 |
| 3 | 0.0 | 45.0 | -3.0 |
| 4 | -0.468 75 | 144.84375 | -4.5 |
| 5 | 0.0 | 464.44444444 | -11.0 |
| 6 | -1.1484375 | 1469.35850694 | -20.507 8125 |
| 7 | 0.0 | 4639.48234954 | -57.699 2187499 |
| 8 | -4.395 26367188 | 14544.1192397 | -114.836 303711 |
| 9 | 0.0 | 45537.4796633 | -350.106 72013 |
| Triangular lattice |  |  |  |
| 0 | 0.0 | 1.0 | 2.0 |
| 1 | 0.0 | 6.0 | -6.0 |
| 2 | -0.75 | 32.25 | -6.0 |
| 3 | -0.75 | 166.5 | -10.5 |
| 4 | -1.359 375 | 843.046875 | -31.5 |
| 5 | -3.093 75 | 4218.41666667 | -98.53125 |
| 6 | -8.355 46875 | 20941.0230035 | -346.7109375 |
| 7 | -24.66796875 | 103361.512587 | -1255.205 56641 |
| 8 | -78.1273583008 | 507986.371687 | -4795.4370120 |

Table 2 lists the perturbation series coefficients for this model. The susceptibility series for the line lattice was previously calculated to sixth order by Hamer and Kogut (1979), and the mass gap series was obtained to tenth order by Hornby and Barber (1985). Sobelman (1981) has calculated the mass gap to fourth order for a hypercubic lattice in any number of dimensions.

For the $\mathrm{O}(3)$ Heisenberg model, the quantum Hamiltonian is

$$
\begin{equation*}
H=\sum_{i} J^{2}(i)-x \sum_{\langle i j\rangle} n(i) \cdot n(j)-h \sum_{i} n_{1}(i) \tag{2.7}
\end{equation*}
$$

where now $n(i)$ is a three-component spin vector at site $i$ (normalised to unity), and $\boldsymbol{J}(i)$ is a vector angular momentum operator. For further detials, we refer to Hamer et al (1979). Table 3 lists the perturbation series for this model. For the line lattice, the mass gap series has previously been calculated to sixth order by Hamer et al (1979), and the susceptibility series to sixth order by Hamer and Kogut (1979). The ( $2+1$ )-dimensional model has not been studied before, to our knowledge.

## 3. Series analysis

The 24 series listed in tables 1, 2 and 3 have all been analysed by eight distinct methods. Seven of the methods extrapolate the ratios of coefficients, while the eighth method is the method of differential approximants (Guttmann and Joyce 1972, Rehr et al 1980). Attempting to extrapolate the ratios of coefficients it is clear that, in most cases,

Table 2. High-temperature series in $x$ for the vacuum energy per site $\omega_{0} / N$, the susceptibility $\chi$ and the mass gap $F$ for the $O(2)$ Heisenberg model. Coefficients of $x^{n}$ are listed for the line, square and triangular lattices.

| $n$ | $\omega_{0} / N$ | $\chi$ | $F$ |
| :---: | :---: | :---: | :---: |
| Line lattice |  |  |  |
| 0 | 0.0 | 1.0 | 1.0 |
| 1 | 0.0 | 2.0 | -1.0 |
| 2 | -0.25 | 2.6 | 0.125 |
| 3 | 0.0 | 2.8875 | 0.03125 |
| 4 | 0.006510416667 | 2.89543413839 | 0.0143880208333 |
| 5 | 0.0 | 2.69626196900 | 0.00600206163194 |
| 6 | 0.00122044477513 | 2.39466162947 | 0.000226149678417 |
| 7 | 0.0 | 2.04274422703 | 0.000695799136309 |
| 8 | 0.0000181309265634 | 1.68675332507 | -0.000 17502779625 |
| Square lattice |  |  |  |
| 0 | 0.0 | 1.0 | 1.0 |
| 1 | 0.0 | 4.0 | 2.0 |
| 2 | -0.5 | 13.2 | -0.75 |
| 3 | 0.0 | 42.575 | -1.375 |
| 4 | -0.3828125 | 131.887566369 | -1.379 81770833 |
| 5 | 0.0 | 404.761871477 | -4.08794704863 |
| 6 | -0.718256035053 | 1223.91812346 | -5.678 69366786 |
| 7 | 0.0 | 3682.46398334 | -18.405 0494359 |
| 8 | -0.231359 616070 | 10992.8683155 |  |
| Triangular lattice |  |  |  |
| 0 | 0.0 | 1.0 | 1.0 |
| 1 | 0.0 | 6.0 | -3.0 |
| 2 | -0.75 | 31.8 | -2.625 |
| 3 | -0.75 | 160.2225 | -4.3125 |
| 4 | -1.16796875 | 786.990563358 | -12.065 4296875 |
| 5 | -2.356770 83333 | 3806.08960655 | -35.091933 5938 |
| 6 | -5.784 36802456 | 18214.7745024 | -116.279 209828 |
| 7 | -15.736769 379 | 86508.909227 | -393.768 284 |
| 8 | -46.094316275 8 | 408510.254601 | -1421.975 81667 |

the ratios are affected by one or more singularities other than the physical singularityusually an 'antiferromagnetic' singularity on the negative real axis. To diminish the effect of this singularity, we have first transformed the series by an Euler transformation

$$
\begin{equation*}
y=x(1+\alpha) /\left(1+\alpha x / x_{\mathrm{c}}\right) \tag{3.1}
\end{equation*}
$$

where $x$ is the original expansion variable, $y$ is the new variable, $x_{c}$ is an estimate of the critical temperature (which need not be particularly accurate, but is a fixed point of the transformation) and $\alpha$ is a user-chosen parameter. As discussed by Nickel (1982), it is important to make $\alpha$ as small as possible, consistent with the desired result that the effect of singularities other than the one of interest be eliminated. The frequent choice $\alpha=1$ has the disadvantage that the transformed series (in $y$ ) effectively utilises only half the original series coefficients (see Guttmann (1989) for an expansion of this point). Thus in this analysis we have chosen $\alpha$ in the range [0.1-0.4], as appropriate. The series thus transformed then have smooth, extrapolable ratios of series coefficients.

Table 3. High temperature series in $x$ for the vacuum energy per site $\omega_{0} / N$, the susceptibility $\chi$ and the mass gap $F$ for the $O(3)$ Heisenberg model. Coefficients of $x^{n}$ are listed for the line, square and triangular lattices.

| $n$ | $\omega_{0} / N$ | $\chi$ | $F$ |
| :---: | :---: | :---: | :---: |
| Line lattice |  |  |  |
| 0 | 0.0 | 0.3333333333333 | 2.0 |
| 1 | 0.0 | 0.2222222222222 | -0.666 6666666667 |
| 2 | -0.083 33333333333 | 0.0949074074075 | 0.037037037037 |
| 3 | 0.0 | 0.0328896804939 | 0.000432098765432 |
| 4 | 0.00005787037037 | 0.00993068568735 | 0.000327421778039 |
| 5 | 0.0 | 0.00257431932570 | 0.000020140463593 |
| 6 | 0.000002764366549 | 0.00064994368776 | -0.000016881989548 |
| Square lattice |  |  |  |
| 0 | 0.0 | 0.333333333333 | 2.0 |
| 1 | 0.0 | 0.444444444444 | -1.333 333333333 |
| 2 | -0.166 6666666667 | 0.486111111111 | -0.148148148148 |
| 3 | 0.0 | 0.516396604940 | -0.098 3539094650 |
| 4 | -0.013 1944444444 | 0.525667790395 | -0.024 8301652623 |
| 5 | 0.0 | 0.528065910445 | -0.028 656708446 |
| 6 | -0.002 3642449295 | 0.522165623325 | -0.01073167323 |
|  |  |  | -0.012999 6988048 |
| Triangular lattice |  |  |  |
| 0 | 0.0 | 0.333333333333 | 2.0 |
| 1 | 0.0 | 0.666666666667 | -2.0 |
| 2 | -0.25 | 1.173611111111 | -0.555 555555556 |
| 3 | -0.083 33333333333 | 1.955729166667 | -0.295679012346 |
| 4 | -0.041 31944444444 | 3.16639313731 | -0.257983 049187 |
| 5 | -0.026 07407407 | 5.03574252030 | -0.238 77922164 |
|  |  |  | -0.253 4373280 |

The coefficients of the transformed series were then analysed by the standard ratio method with Neville-Aitken extrapolation; the method of Barber and Hamer (1982), which was designed for the extrapolation of such series; Lubkin's (1952) three-term method, advocated by Drummond (1984) as a powerful general purpose extrapolation scheme; the Bulirsch-Stoer (1964) method, which has been recently applied to such series as ours by Henkel and Schutz (1988); Levin's u transform (Levin 1973); Brezinski's $\theta$ transform (Brezinski 1971) and Wynn's $\varepsilon$ algorithm (Wynn 1956). These last three have been found by Smith and Ford (1982) to be the most powerful general purpose methods of analysis for logarithmically convergent sequences. These methods are all described, compared and discussed in Guttmann (1989).

In tables 4 and 5 we show a typical analysis of our data-in this case the susceptibility series of the $(2+1)$-dimensional triangular lattice $O$ ( 2 ) model. Table 4 shows the result of an inhomogeneous differential approximant analysis (Guttmann 1987a), where we have tabulated the estimates of critical points and critical exponents of $[L / N+\Lambda ; N]$ approximants, with $\Lambda=-1,0,1$. Defective approximants are marked with an asterisk. Combining these following the statistical procedure described in Guttmann (1987a), we obtain the estimate $x_{\mathrm{c}}=0.2208 \pm 0.0002, \gamma=1.345 \pm 0.025$. In table 5 we show the results of the other seven methods, applied to the extrapolation of the ratio sequence, after the series was first transformed using the transformation (3.1) with $\alpha=0.1$ and

Table 4. Triangular lattice $(2+1)$-dimensional, $\mathrm{O}(2)$ model susceptibility. Differential approximants $[L / N+\Lambda ; N], \Lambda=-1,0,1$, showing estimates of $x_{\mathrm{c}}$ and $\gamma$. Defective approximants are marked with an asterisk.

| $L$ | A | $N=1$ | $N=2$ | $N=3$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | -1 |  | 0.21435 | 0.22094 |
|  |  |  | -1.107 | -1.353 |
|  | 0 | 0.21988 | 0.22089 | 0.221 08* |
|  |  | -1.310 | -1.352 | -1.368 |
|  | 1 | 0.22061 | 0.22104 |  |
|  |  | -1.338 | -1.364 |  |
| 2 | $-1$ | - | 0.22088 | $0.22101^{*}$ |
|  |  | - | -1.351 | -1.362 |
|  | 0 | 0.22044 | 0.220 56* |  |
|  |  | -1.328 | -1.292 |  |
|  | 1 | 0.22090 | $0.22107^{*}$ |  |
|  |  | -1.353 | -1.367 |  |
| 3 | $-1$ | - | 0.22098 |  |
|  |  | - | -1.358 |  |
|  | 0 | 0.22071 | 0.221 04* |  |
|  |  | -1.340 | -1.365 |  |
|  | 1 | 0.22100 |  |  |
|  |  | -1.360 |  |  |
| 4 | -1 | - | 0.22047 |  |
|  |  | - | -1.318 |  |
|  | 0 | 0.22084 |  |  |
|  |  | -1.347 |  |  |
|  | 1 | $0.2217^{*}$ |  |  |
|  |  | -1.418 |  |  |
| 5 | -1 | - |  |  |
|  |  | - |  |  |
|  | 0 | 0.22063 |  |  |
|  |  | -1.334 |  |  |

$1 / x_{\mathrm{c}}=4.530$. The simple method of Neville-Aitken extrapolation produced the most regular sequences of estimates. These give for $1 / y_{c}$ the estimate $4.531 \pm 0.004$, while extrapolation of the sequence of linear intercepts of the ratios (not shown) gave the same estimate of $y_{c}$, but with half the error. This result maps to $x_{c}=0.2207 \pm 0.0001$ under the inverse of (3.1).

This result is consistent with the estimate from the differential approximants, as well as with that obtained from the other extrapolation techniques, as shown in table 5. Most of the other methods, the results of which are shown in table 5, would, however, have error bars five to ten times as large.

A similar analysis was performed for each series, where in each case we extrapolated not only the sequence of ratios, but also the sequence of linear intercepts of the ratios, given by

$$
\begin{equation*}
\zeta_{n}=n r_{n}-(n-1) r_{n-1} \tag{3.2}
\end{equation*}
$$

where $r_{n}$ is the ratio, $a_{n} / a_{n-1}$, of successive coefficients of the transformed series.

Table 5. Extrapolations of the sequence of ratios of the coefficients of the $O(2)$ model triangular lattice $(2+1)$-dimensional susceptibility series. $r_{n}$ are ratios, $e_{n}^{(k)}$ are $k$ th-order Neville-Aitken extrapolants, $\zeta_{n}^{(k)}$ are $k$ th-order extrapolants from Lubkin's transform, $b h_{n}^{(k)}$ are $k$ th-order extrapolants using the Barber-Hamer method, while $u_{n}^{(k)}, \varepsilon_{n}^{(k)}, \theta_{n}^{(k)}$ and $B-S_{n}^{(k)}$ are $k$ th-order extrapolants using Levin's $u$ transform, Wynn's $\varepsilon$ algorithm, Brezinski's $\theta$ algorithm and the Bulirsch-Stoer algorithm respectively.

| $n$ | $r_{n}$ | $e_{n}^{(1)}$ | $e_{n}^{(2)}$ | $\zeta_{n}^{(1)}$ | $\zeta_{n}^{(2)}$ | $b h_{n}^{(1)}$ | $b h_{n}^{(2)}$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 5.4545 |  |  |  |  |  |  |  |
| 2 | 5.2300 | 5.0055 |  |  |  |  |  |  |
| 3 | 5.0109 | 4.5729 | 4.3565 | 5.4601 |  | -3.7299 |  |  |
| 4 | 4.8969 | 4.5546 | 4.5364 | 5.0050 |  | 4.7728 |  |  |
| 5 | 4.8268 | 4.5464 | 4.5341 | 4.5286 | 5.4534 | 4.7151 | 4.6972 |  |
| 6 | 4.7792 | 4.5412 | 4.5310 | 4.5176 | 4.5291 | 4.6785 | 4.4971 |  |
| 7 | 4.7447 | 4.5377 | 4.5288 | 4.5169 | 4.5168 | 4.6538 | 4.5154 |  |
| 8 | 4.7186 | 4.5359 | 4.5305 | 4.5416 | 4.5172 | 4.6375 | 4.5780 |  |
| $n$ | $u_{n}^{(1)}$ | $u_{n}^{(2)}$ | $\varepsilon_{n}^{(1)}$ | $\varepsilon_{n}^{(2)}$ | $\theta_{n}^{(1)}$ | $B-S_{n}^{(1)}$ | $B-S_{n}^{(2)}$ | $B-S_{n}^{(3)}$ |
| 1 |  |  |  |  |  | 5.4545 |  |  |
| 2 |  |  |  |  |  | 5.2301 | 4.7229 |  |
| 3 | 5.4603 |  | -3.7299 |  |  | 5.0110 | 4.3130 |  |
| 4 | 4.4894 |  | 4.7728 |  | 5.0050 | 4.8969 | 4.3860 | 4.493 |
| 5 | 4.5092 | 5.0050 | 4.7151 | 4.7266 | 4.5286 | 4.8269 | 4.4236 | 4.500 |
| 6 | 4.5125 | 4.5287 | 4.6786 | 4.6509 | 4.5176 | 4.7793 | 4.4454 | 4.502 |
| 7 | 4.5139 | 4.5176 | 4.6537 | 4.6276 | 4.5169 | 4.7448 | 4.5927 | 4.504 |
| 8 | 4.5223 | 4.5169 | 4.6375 | 4.6194 | 4.5416 | 4.7187 | 4.6984 | 4.509 |

Similarly, unbiased estimates of the exponent are given by the sequence with terms $\gamma_{n}$, where

$$
\begin{equation*}
\gamma_{n}=\left[n(2-n) r_{n}+(n-1)^{2} r_{n-1}\right] / \zeta_{n} . \tag{3.3}
\end{equation*}
$$

Once $x_{c}$ has been estimated, biased exponent estimates can be obtained from the sequence $\left\{\gamma_{n}^{b}\right\}$, with elements

$$
\begin{equation*}
\gamma_{n}^{b}=\left(n x_{\mathrm{c}} r_{n}-n+1\right) . \tag{3.4}
\end{equation*}
$$

Both the biased and unbiased exponent sequences were also extrapolated by all seven sequence extrapolation algorithms for all series.

The results of this analysis is summarised in table 6 for the $(2+1)$-dimensional susceptibility series and mass gap series, which give estimates of the exponents $\gamma$ and $\nu$ respectively. We have not analysed the series for the vacuum energy, as they are rather shorter than the other series, and also more difficult to analyse. For the line lattice, our analysis of the $O(2)$ model gave an estimate of $x_{c}=1.55 \pm 0.20$, but no value of the critical exponent consistent with a conventional algebraic singularity was found. A subsequent analysis that assumed a Kosterlitz-Thouless-type singularity indicated that the series were too short for confident assertions about the nature of the singularity from these series alone. Another analysis of these series, and other data pertaining to this problem, is to be found in Allon and Hamer (1988). For the O(3) model on the line lattice we found no evidence of a critical point.

A comparison of our analysis with previous analyses is given in table 7 for the Ising model. For comparison we also give the results of a representative analysis of

Table 6. Summary of results of analyses described in text for ( $2+1$ )-dimensional susceptibility series and mass gap series. The confidence limits are shown bracketed after each entry.

| Model | $x_{\text {c }}$ | $\gamma$ (unbiased) | $\gamma$ (biased) | $\nu$ (unbiased) | $\nu$ (biased) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Square lattice |  |  |  |  |  |
| Ising | 0.3285 (4) | 1.239 (5) | 1.245 (4) | 0.646 (8) | 0.640 (5) |
| O(2) | 0.3480 (10) | 1.33 (3) | 1.310 (5) | 0.695 (4) | 0.676 (10) |
| O(3) | 1.080 (5) | 1.41 (4) | 1.40 (1) | 0.724 (8) | 0.724 (4) |
| Triangular lattice |  |  |  |  |  |
| Ising | 0.20972 (7) | 1.234 (4) | 1.242 (2) | 0.646 (8) | 0.640 (5) |
| $\mathrm{O}(2)$ | 0.2207 (1) | 1.33 (1) | 1.334 (5) | 0.686 (3) | 0.686 (3) |
| O(3) | 0.6783 (4) | 1.397 (1) | 1.395 (5) | 0.713 (5) | 0.713 (2) |

Table 7. A comparison of previous calculations with results obtained in this work for the ( $2+1$ )-dimensional Ising model: HTFT = High-temperature field theory, LTFT= Low-temperature field theory, $\mathrm{FSS}=$ Finite-size scaling, $\mathrm{EL}=$ Euclidean lattice model.

| Calculation | $\nu$ | $\gamma$ | $x_{\text {c }}$ |
| :---: | :---: | :---: | :---: |
| Square lattice |  |  |  |
| HTFT Hamer and Irving 1984 | 0.66 (2) | 1.257 (10) | 0.3290 (10) |
| LTFT Marland 1981 | - | $\gamma^{\prime}=1.25$ | 0.329 (1) |
| fsS Hamer 1983 | 0.635 (5) | - | 0.329 (1) |
| fss Henkel 1984 | 0.629 (2) | - | 0.328 (1) |
| This work | 0.646 (8) ub | 1.239 (5) ub | 0.3285 (4) |
|  | 0.640 (5) b | 1.245 (4) b |  |
| El Guttmann 1987b | 0.632 (3) | 1.239 (3) | N.A. |
| Triangular lattice |  |  |  |
| HTFT Hamer and Irving 1984 | 0.64 (2) | 1.247 (5) | 0.20976 (15) |
| LTFT Marland 1981 | - | $\gamma^{\prime}=1.250$ (12) | 0.2098 (2) |
| fsS Hamer and Johnson 1986 | 0.627 (4) | 1.236 (8) | 0.2096 (2) |
| This work | 0.646 (8) ub | 1.243 (4) ub | 0.20972 (7) |
|  | 0.640 (5) b | 1.242 (2) b |  |
| EL Guttmann 1987b | 0.632 (3) | 1.239 (3) | N.A. |

the Euclidean lattice spin model. It can be seen that the analysis of the mass-gap series presented here is less accurate than analyses based on finite-size scaling (Hamer 1983, Henkel 1984, Hamer and Johnson 1986), while the analysis of the susceptibility series is significantly more accurate than any previous analysis, as is the estimate of the critical point. Comparison with recent series estimates (Guttmann 1987b) demonstrates satisfying consistency between the Euclidean lattice model and its counterpart in Hamiltonian lattice field theory.

## 4. Conclusions

Our final estimates for the critical parameters of the three models on the square and triangular lattices are summarised in table 6. These are the first accurate estimates which have been made for the $O(2)$ and $O(3)$ Heisenberg models.

For the Ising model, earlier series estimates have been given by Marland (1981) and by Hamer and Irving (1984). Our results are generally in good agreement with those earlier estimates, but are about twice as accurate. Finite-size scaling analyses have also been made by Hamer (1983) and Henkel (1984) for the square lattice, and by Hamer and Johnson (1986) for the triangular lattice. For the critical index $\nu$, in particular, they obtained results $0.635(5), 0.629$ (2) and 0.627 (4) respectively which are slightly lower and perhaps slightly more accurate than ours.

## Acknowledgments

AJG would like to thank the Australian Research Grants Committee for supporting this work.

## References

Allton D and Hamer C J 1988 J. Phys. A: Math. Gen. 212417
Barber M N and Hamer C J 1982 J. Aust. Math. Soc. B 23229
Brezinski C 1971 C.R. Acad. Sci., Paris A-B 273427
Bulirsch R and Stoer J 1964 Numer. Math. 6413
Drummond J E 1984 J. Comp. Appl. Math. 11145
Fradkin E and Susskind L 1978 Phys. Rev. D 172637
Gaunt D S and Guttmann A J 1974 Phase Transitions and Critical Phenomena vol 3, ed C Domb and M S Green (New York: Academic)
Guttmann A J 1987a J. Phys. A: Math. Gen. 201839
-_ 1987b J. Phys. A: Math. Gen. 201855
_- 1989 Phase Transitions and Critical Phenomena vol 13, ed C Domb and J Lebowitz (New York: Academic)
Guttmann A J and Joyce G S 1972 J. Phys. A: Math. Gen. 5 L81
Hamer C J 1983 J. Phys. A: Math. Gen. 161257
Hamer C J and Irving A C 1984 J. Phys. A: Math. Gen. 171649
Hamer C J and Johnson C H J 1986 J. Phys. A: Math. Gen. 19423
Hamer C J and Kogut J B 1979 Phys. Rev. B 203859
Hamer C J, Kogut J B and Susskind L 1979 Phys. Rev. D 193091
Henkel M 1984 J. Phys. A: Math. Gen. 17 L795
Henkel M and Schutz G 1988 J. Phys. A: Math. Gen. 212617
Hornby P G and Barber M N 1985 J. Phys. A: Math. Gen. 18827
Irving A C and Hamer C J 1984 Nucl. Phys. B 230361
Levin D 1973 Int. J. Comp. Math. B 3371
Lubkin S 1952 J. Res. NBS 48228
Marland L G 1981 J. Phys. A: Math. Gen. 142047
Nickel B G 1980a unpublished
_- 1982 Phase Transition: Cargése 1980 ed M Levy, J C Le Guillou and J Zinn-Justin (New York: Plenum)
Rehr J J, Joyce G S and Guttmann A J 1980 J. Phys. A: Math. Gen. 131587
Smith D A and Ford W F 1982 Math. Comp. 38481
Sobelman G E 1981 Phys. Rev. B 241493
Wynn P 1956 Math. Tables Comput. 1091

